
One Program to 
Rule the Intersection

Simplifying Development of 
Distributed, Time-Sensitive Applications

Reese Grimsley, Edward Andert, Ian McCormack, Eve Hu, Bob Iannucci



Smart Intersections

● Light-free traffic control
○ Individualized routes, higher efficiency

● Distributed, time-sensitive application
● Precise timing requirements

○ Several ms of error yields catastrophe

2Source: https://safespeedllc.com/Source: ’Rush Hour’ by Black Sheep Films



1/10th CAV Smart Intersection Application

● Figure-8 intersection with signal-free traffic 
control

○ 2 Cars (CAVs) with LIDAR and 
cameras for SLaM, object detection

○ Roadside Unit (RSU) plans trajectories
● Development challenges

○ Timing and deadlines
○ Synchronizing sampled input streams
○ Fault tolerance
○ Explicit communication, retransmission

3



Design Principles 

● Compatibility
○ TTPython

● Simplify time management at user level
○ Synchronization, deadline checking

● Failure handling/recovery
○ Plan B

● Abstract over communication 
○ Generic network interface

4



TTPython
Systems-Level Programming for Distributed, Time-Sensitive Systems

5

Compile to 
Graph

Map to 
System

CAV

RSU

IS



Scheduling Quantum (SQ)

● Building block of dataflow graph
○ Abstractions help shift developer 

focus to application specifics
● Synchronize inputs 
● Runs to completion once enabled
● Arcs between SQs represent

implicit communication

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)

6



Merging Sampled Data Streams
● Synchronize sampled data using time

○ Asynchronous devices → frequency, phase errors
○ Overlapping interval of data validity

7

RSU

ISCAV x2

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)



Tolerate Faults with “Plan B”

● Failures happen → support alternative action
● Enforce timely action with deadlines

○ Shortcut synchronization
○ Execute “Plan B”, e.g. apply brakes

8

Deadline
Synchronization

(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)



Implicit Communication 

Graph arc → potential communication link
● i.e., subsequent SQs mapped to different devices

9

Device Boundaries

RSU ISCAVs 1,2

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)

CAV
Fusion

RSU
Global- 
Fusion



The Improved Intersection

Simplify development by abstracting time, communication 
● Focus less on distributed system, temporal issues

○ SQs handle timing, deadlines, synchronization
○ Graph encodes communication links implicitly 

● Exposed subtle application bugs

10



Quantitative Improvements

11

N=3000; 6.5 minutes of continuous testing

Round Trip Latency
127 ms to 85ms 

-33%

Actuation
Deadlines Hit

0.7%

Median Function Sync 
Latency

1.5-2ms

Mean Overhead on 
Critical Path

5ms



Future Work

● Extend to other distributed, time-sensitive applications
○ User studies

● Dynamic mapping based on heuristics
○ Optimize metrics like latency, power-consumption

● Theoretical model for “time-governed” dataflow
● Build a community!

○ Code: https://bitbucket.org/ccsg-res/ticktalkpython/src/master/
○ Docs: http://ccsg.ece.cmu.edu/ttpython/index.html 
○ Contact: ticktalk-python@lists.andrew.cmu.edu 

12

https://bitbucket.org/ccsg-res/ticktalkpython/src/master/
http://ccsg.ece.cmu.edu/ttpython/index.html
mailto:Ticktalk-python@lists.andrew.cmu.edu


Conclusion 

● Distributed, time-sensitive applications are challenging
● TTPython framework for system-level programming

○ “Scheduling Quantum” (SQ) abstraction
■ Simplify communication and time-sensitive behavior

● Improved smart-intersection development process
○ Increased performance 

■ End-to-end latency reduced from 127 ms to 85 ms
○ Reasonable overhead 

■ 2 ms latency for input synchronization, 5ms along critical path

13


