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Smart Intersections

● Light-free traffic control
○ Individualized routes, higher efficiency

● Distributed, time-sensitive application
● Precise timing requirements

○ Several ms of error yields catastrophe

2Source: https://safespeedllc.com/Source: ’Rush Hour’ by Black Sheep Films



1/10th CAV Smart Intersection Application

● Figure-8 intersection with signal-free traffic 
control

○ 2 Cars (CAVs) with LIDAR and 
cameras for SLaM, object detection

○ Roadside Unit (RSU) plans trajectories
● Development challenges

○ Timing and deadlines
○ Synchronizing sampled input streams
○ Fault tolerance
○ Explicit communication, retransmission
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Design Principles 

● Compatibility
○ TTPython

● Simplify time management at user level
○ Synchronization, deadline checking

● Failure handling/recovery
○ Plan B

● Abstract over communication 
○ Generic network interface
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TTPython
Systems-Level Programming for Distributed, Time-Sensitive Systems
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Scheduling Quantum (SQ)

● Building block of dataflow graph
○ Abstractions help shift developer 

focus to application specifics
● Synchronize inputs 
● Runs to completion once enabled
● Arcs between SQs represent

implicit communication

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)
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Merging Sampled Data Streams
● Synchronize sampled data using time

○ Asynchronous devices → frequency, phase errors
○ Overlapping interval of data validity
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Tolerate Faults with “Plan B”

● Failures happen → support alternative action
● Enforce timely action with deadlines

○ Shortcut synchronization
○ Execute “Plan B”, e.g. apply brakes
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Implicit Communication 

Graph arc → potential communication link
● i.e., subsequent SQs mapped to different devices
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Device Boundaries

RSU ISCAVs 1,2

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)
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The Improved Intersection

Simplify development by abstracting time, communication 
● Focus less on distributed system, temporal issues

○ SQs handle timing, deadlines, synchronization
○ Graph encodes communication links implicitly 

● Exposed subtle application bugs
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Quantitative Improvements
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N=3000; 6.5 minutes of continuous testing

Round Trip Latency
127 ms to 85ms 

-33%

Actuation
Deadlines Hit

0.7%

Median Function Sync 
Latency

1.5-2ms

Mean Overhead on 
Critical Path

5ms



Future Work

● Extend to other distributed, time-sensitive applications
○ User studies

● Dynamic mapping based on heuristics
○ Optimize metrics like latency, power-consumption

● Theoretical model for “time-governed” dataflow
● Build a community!

○ Code: https://bitbucket.org/ccsg-res/ticktalkpython/src/master/
○ Docs: http://ccsg.ece.cmu.edu/ttpython/index.html 
○ Contact: ticktalk-python@lists.andrew.cmu.edu 
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Conclusion 

● Distributed, time-sensitive applications are challenging
● TTPython framework for system-level programming

○ “Scheduling Quantum” (SQ) abstraction
■ Simplify communication and time-sensitive behavior

● Improved smart-intersection development process
○ Increased performance 

■ End-to-end latency reduced from 127 ms to 85 ms
○ Reasonable overhead 

■ 2 ms latency for input synchronization, 5ms along critical path
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