
TrafficNNode: Low Power Vehicle Sensing Platform
for Smart Cities

Justin Nguyen
Electrical and Computer Engineering

Carnegie Mellon University
Mountain View, CA USA
justin.nguyen@sv.cmu.edu

Reese Grimsley
Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA USA

reeseg@cmu.edu

Bob Iannucci
Electrical and Computer Engineering

Carnegie Mellon University
Mountain View, CA USA

bob@sv.cmu.edu

Abstract—Automating traffic monitoring and management can
materially contribute to the realization of Smart Cities, but this
demands detailed, accurate and timely characterization of traffic
flows. Current methods employ video capture (high installation
and operating costs), pneumatic-tube-based counters (limited
detail about vehicle types and often only installed temporarily),
or manual data capture (high human cost).

We have developed an intelligent, inexpensive, pavement-
mountable device capable of collecting information about vehicle
types and speeds using an embedded, power-optimized neural
network. The device is designed to fit within a raised pavement
marker (RPM). RPMs are deployed throughout the world as lane
markers. Packaging our sensing technology into RPMs offers
the potential to significantly improve the spatial and temporal
resolution of traffic flow information across a city.

We outline our methodology for energy-optimized machine
learning on a small, resource-constrained sensor device. We
present the results of our work in terms of accuracy (96%
classifying vehicle type and 89% classifying vehicle speed) and
battery life (three years).

Index Terms—tinyML; embeddedML; traffic sensing; Smart
Cities; IoT; RNN; Low-Power.

I. INTRODUCTION

Smart Cities employ pervasive sensing networks that enable
intelligence in city infrastructure, resource management, and
policy to improve the well-being of the city and its inhabi-
tants [1]. Roads are a critical component of city infrastructure,
and applying concepts from smart cities to their improvement
can yield substantial, widespread benefit.

To better understand roadways and their use, cities need to
measure quantities like traffic volumes, the types of vehicles,
and their speed [2]. But such measurements become actionable
only when they are precise in space (down to the road segment)
and time (based on time-of-day, day-of-week, season); dis-
criminating of vehicle types; and available within minutes or
seconds. For instance, city planners might learn through such
measurements that a disproportionate number of large utility
vehicles travel through side streets during rush hour to avoid a
left turn at a busy traffic light, resulting in congestion for that
side street. Armed with this knowledge, signage, traffic signal
re-timings and other simple interventions can be implemented
to reduce the congestion and re-balance the traffic flows in that
area. Such improvements benefit drivers, residents, business-
owners, and policymakers [3].

To facilitate fine-grain data collection at a city-scale, tens
of thousands of sensors (or more) will be needed [4]. Existing
traffic monitoring solutions (video, inductive loop, pneumatic
tube) would incur high installation and operating costs to
achieve the necessary level of detail. Suitable traffic sensors
need to be inexpensive to manufacture, deploy, and maintain,
and should last as long as the rest of the city’s roadway system,
i.e., multiple years without constant attention.

A long-lasting, battery-powered solution is the most cost-
effective one. Battery powered platforms are cheaper to deploy
because they avoid the cost of installing mains power. Battery-
powered sensors with short lifetimes incur significant mainte-
nance costs, especially if they are situated in the roadways, as
technicians must frequently visit thousands of devices to swap
batteries, temporarily closing roadways in the process. Such
sensors must last for years between required maintenance, just
like a stop sign or a traffic light.

Nellore [2] provides an overview of known traffic sensing
technologies. Given our power constraints, the only sensors
that meet our requirements are low-powered MEMS transduc-
ers such as accelerometers, magnetometers, or microphones.
Other studies have proposed sensing based on inductive loops
[5]–[7] which use traditional signal processing techniques to
determine speed or vehicle type. In this work, we demonstrate
that it is possible to extract vehicle speed and type by combin-
ing mature three-axis magnetometer devices with embedded
machine learning, all of which can be packaged in a compact,
battery-operated device that can live on road surfaces for three
to five years without maintenance. We present the somewhat
counter-intuitive result that performing this computation in
the device and only sending summary information wirelessly
actually runs at lower average power than streaming sensed
readings and performing the neural network computations at
the edge or in the cloud.

In this work, we develop a gated recurrent unit (GRU) [8]
classification model which can be deployed on a microcon-
troller. We evaluate this on our custom hardware (based on a
commodity ARM Cortex-M4 processor) using vehicular data
collected for this purpose. The entire sensor–the TrafficNNode–
includes a low-power wide-area network radio and a suitable
battery, and is designed to fit within a commodity Raised
Pavement Marker (RPM). RPMs are widely deployed on roads



world wide and are excellent vantage points for observing
traffic flows. Our classification model is capable of counting
vehicles, classifying them by type and speed range with 96%
and 89% accuracy, respectively. Our device has an estimated
life time of up to three years for a 2 Ah Li−SOCl2 battery.

Our contributions include:

• An in-depth feasibility analysis of a battery-powered IoT
sensor with embedded machine learning for a Smart City
traffic measurement system

• Domain-specific optimization techniques and methodolo-
gies to improve the battery life for embedded machine
learning without sacrificing accuracy

II. RELATED WORK

Traffic measurement systems (TMS) for Smart Cities are
the building blocks upon which we build our work. Table-1 of
[2] provides a concise overview of infrastructure-based traffic
sensing technologies. TMS’s and their impact are discussed
in [2], [9]–[11]. These works examine various measurement
methods, the majority of which would not scale for fine-
grained measurements since they either rely too heavily on ex-
isting infrastructure or their sensing modalities are too power-
hungry for deployment on cheap, battery-powered sensors.
Additionally, [12], [13] explore the use of vehicle-based and
fog-computation data collection methods while [14] covers
sensor-fusion/modelling strategies. While these methodologies
do not have any reliance on infrastructure, they raise several
privacy and security concerns [15] that make their general
acceptance a challenge for city-scale deployment.

Prior literature has identified magnetic flux as a useful
modality for sensing vehicles, given the large amount of
ferromagnetic material present in automobiles [5]–[7]. Traffic
lights are often informed of vehicle presence by inductive
loops installed beneath the road surface, which requires costly
infrastructure changes. MEMS magnetoresistive sensors have
become common transducers in a variety of devices, often
acting as compasses in mobile phones. These sensors produce
3-axis, time-series flux readings at up to 1 kHz while con-
suming less than 1mA, and they can be used with a variety
of signal processing techniques. A vehicle speed estimation
study using AMR sensors [7] implemented a graph based
approach to determine vehicle speed on an RPM-like wireless
sensor. However, they are unable to determine the traffic
composition, i.e., vehicle types, and their system will only
last one year on a 5 Ah battery. We build upon these studies
with a neural-network based approach that was infeasible until
recent advances in tinyML and modern microcontrollers.

Successful Smart Cities need to leverage big data and
machine learning. This could be implemented in the cloud,
but the growing rate of data collection has quickly outpaced
network infrastructure growth [16]. The dichotomy between
cloud and edge computing has been thoroughly discussed in
[17] where, in addition to data collection rates and network
limitations, energy usage of pervasive IoT sensors warrant
local computation whenever possible.

Fig. 1: CommonSense Hardware Platform for Low-Power
Sensing

Processor Speed 120 MHz
RAM 256 kB

FLASH 1024 kB
Active Current 21.26 ± 0.072 mA
Sleep Current 35.8 ± 1.80 µA

Magnetometer Active Current (400 Hz) 575 µA
Magnetometer Sleep Current (12.5 Hz) 40µA
LoRa Transmit Power (SF10+14dBm) 33.5 mA

TABLE I: CommonSense Hardware Parameters

The field of tinyML, i.e., machine learning on deeply
embedded devices, is relatively new. Two leading tools,
TFLM [18] and uTensor [19] make the deployment of neural
networks on microcontrollers computationally feasible: Micro-
controllers have limited memory and computation resources,
so these tools seek to reduce related requirements without
losing more than a few percent of accuracy. Common im-
provements include quantizing floating-point weights, which
require many compute cycles to use, into fixed-point weights
as well as replacing small weights with zeros, i.e., sparsifying,
to reduce the total number of operations. These improve-
ments allow neural networks to fit within the small RAM
sizes (<1MB) and run the pre-trained model more quickly.
Several studies have been performed [20]–[22] to look at how
neural network architecture can modified to improve energy
efficiency, generally by reducing the computation time, which
has a linear relationship with the total energy consumed. This
can be further optimized by leveraging application knowledge,
which we describe in Section IV.

III. SENSOR, DATASET AND BASELINE MODELS

For our system, we target a custom hardware design,
CommonSense, that is built for prototyping low-power IoT
sensors with substantial compute capabilities. CommonSense,
shown in Figure 1 uses the ATSAMD51 Cortex-M4 pro-
cessor with floating point support, and has an extensible
interface for supporting new radios or sensors. We use an NXP
FXOS8700CQ 3-axis magnetometer and a Semtech SX1261
LoRa radio for this application. Table I describes the relevant
parameters of this platform with respect to computation and
energy consumption.

Page 2



Fig. 2: 3-axis magnetometer trace of a passing vehicle and
associated spectrogram of total magnitude. High ambient

noise requires debouncing to reliably detect a vehicle.

Our training and test datasets for classification of vehicle
types and speeds were built across three separate events.
Drivers were recruited and test tracks were set up at two safe,
off-highway locations. Several prototype TrafficNNodes were
mounted to the pavement in the center of and offset from the
centerline of travel.

The vehicles were queued a few hundred meters up the road
from the sensors to give ample distance to stabilize at target
speed. A radar gun was used to capture actual speed as each
vehicle transited the sensor area. Each TrafficNNode recorded
three-axis magnetometer traces for each passing event. This
was repeated for each of the five speed classes for each of the
eight vehicle six times identically on two separate days. The
vehicles utilized consists of three SUVs, four sedans, and one
police cruiser (a sedan that is heavier than all other vehicles
in the dataset). In total, the dataset consists of 500 vehicle
measurements, evenly split among the five speed classes and
eight vehicle types, which we augment with AWGN noise,
time-shifts, and amplitude scaling to increase the dataset size
by a factor of 20 for a total of 10,000 measurements.

IV. METHODOLOGY

This section follows the step-by-step approach that we took
to design and optimize the classification model for energy

efficient deployment of TrafficNNode. We begin from the
baseline model with no constraint on network size, computa-
tion time, or memory footprint. We implement optimizations
to reduce power without sacrificing more than a few percent of
recognition accuracy for vehicle type and speed. We start with
standard tinyML optimizations like reducing network size,
quantizing weights, and sparsifying the model [22], although
in accordance with that survey, there we found no improve-
ment by quantizing weights to integers on our microcontroller
that has hardware floating point support. Next, we perform
application-specific optimizations, such as reducing the sample
rate, to further reduce energy usage on a single sensor. Finally,
we propose several network-level optimizations, which lever-
ages load-balancing across several sensors to reduce energy
usage even further.

A. TrafficNNode Model

Our traffic-sensing model is built using the Tensorflow and
TFLM [18]. TFLM provides a portable runtime which reads
in a compiled Tensorflow Graph binary. TFLM then constructs
the graph and executes it at runtime.

The network is a many-to-one recurrent classifier where
the recurrent neural network (RNN) is applied over the entire
length of the sequence (here, 3-axis magnetometer samples),
and the final hidden state is passed to a fully-connected layer
with softmax activation to perform the inference. Our network
has two dense, i.e., fully-connected, output layers, which are
jointly trained to classify both the vehicle and the speed class.
We ran several experiments with Elman (traditional RNN),
long-short term memory (LSTM), and gated-recurrent unit
(GRU) cells as the recurrent node. The GRU cell was selected
as it showed the best balance of accuracy vs. computation time;
this is due to the reduced number of instructions compared to
the LSTM cell (GRU does not have an output gate) and better
long-term memory compared to the Elman network [8]. Our
initial RNN achieved 99.2% accuracy where the RNN hidden
layer contains 18 neurons.

B. Metrics

To evaluate performance, we will use accuracy and com-
putation time as our primary metrics. Computation time is a
direct proxy for energy usage because it has a direct linear
correlation as shown by [21]. Intuitively, more time spent
computing means more time spent in a high-powered active
state vs. putting the device into an ultra-low power sleep state.
Equations 2 and 4 translate the computation time into energy
usage over the course of a day.

tcomp/day = AADT × (LtRNNstep + tprojection) (1)

Ecomp/day = VbattIcomp

tcomp/day

86400 s
day

(2)

Esleep/day = VbattIsleep(1−
tcomp,perday

86400 s
day

) (3)

Page 3



Fig. 3: Operations within the GRU cell.

where AADT is the annual average daily throughput (a
metric describing vehicles per day), L is the sequence length 1,
and tlayer is the time in seconds to compute a single forward
propagation for the layer in the model. Icomp is the average
measured current consumption of the processor when perform-
ing the inference and Vbatt is the supply voltage from the
battery, which we assume to be constant throughout the vast
majority of the battery’s life cycle. Icomp and Isleep are shown
in Table I. Ecomp/day and Esleep/day represent the amount of
energy spend over the course of a day performing computation
to classify passing vehicles and sleeping, respectively.

The batteries lifetime is represented as:

tlifetime =
Ebatt

(Ecomp/day + Esleep/day)
(4)

where tlifetime is in days and Ebatt is the battery capacity
in Amp-hours.

As we optimize the classification model with respect to
energy per vehicle classification, we expect to see a trade off
with accuracy.

C. Model Size Tuning

Our first energy optimization is a byproduct of ordinary
network hyperparameter tuning, which is necessary regardless
of our system constraints. Specifically, we tune the hyperpa-
rameter for the number of hidden units, which represents the
size of the internal state vector within the GRU cell. A high
dimension hidden state may lead to over fitting, and a low
dimension will incur under fitting. Here, we prune the network

1The number of magnetometer samples that contains the vehicle’s passing
magnetic signature; L is selected as an upper bound across the speed classes,
as the signature is longer at lower speeds.

Fig. 4: Classification Model Performance for Varied Network
Size

size to reduce overfitting and minimize inference time; this has
a significant impact on energy usage.

The operations within the GRU [8] cell are displayed in
Figure 3. There is a linear relationship between the recurrent
hidden dimension and time-complexity as shown in Figure
4, and thus, a linear relation between the number of hidden
neurons and the energy cost of a single inference.

We empirically select the best value for the recurrent hidden
dimension by sweeping this hyperparameter and analyzing
the accuracy and computation time as shown in Figure 42.
As expected, computation time changes linearly with this
hyperparameter. The accuracy drops as this hyperparameter
decreases, but is nonlinear: we observe a ’knee’ in this curve
around hiddendim = 6 and 12, where the accuracy starts to
drop more sharply. A hiddendim = 8 offers a good tradeoff
of high accuracy and low computation time, although we could
use a smaller dimension to improve the energy efficiency
further at the loss of accuracy. The results following in the
rest of the paper will use hiddendim = 8.

D. Minimal Sufficient Sampling Rate

Another opportunity to reduce computation time and there-
fore save energy is by reducing the sampling rate. This
would also result in shorter sequence lengths. Our baseline
model used every sample, which was collected at 800 Hz,
the maximum sampling rate of the magnetometer. However,
spectral analysis of our data, an example of which is shown in
Figure 2, shows that these signals have little information above
80 Hz, even for vehicles moving at above 60 mph, although
the majority of energy is within 0-50 Hz. Therefore, we know
that the data sampled at 800 Hz is higher than necessary and
that a sampling rate of 160 Hz should be sufficient based on
the Nyquist rate of twice the maximal frequency component.

2Our assessment of the model performance for analyzing energy usage, the
accuracy figures are highly dependent on the dataset we collected which is
still quite limited. This is further discussed in Section V.

Page 4



Decimation Factor Label Acc. Speed Acc. Compute Time (s)
1 0.99496924 0.9860256 0.19136
4 0.99105644 0.98658466 0.09601
8 0.99385130 0.98937952 0.04812

TABLE II: Classification accuracies and compute time for an
inference of a single vehicle over a range of decimation

factors. The accuracies are for the model predicting vehicle
type and speed.

This can be achieved by training and running the network on
data at a lower sample rate. When applying this transformation
to the data, it is crucial that the downsampling operation does
not reduce the data to a point that the model cannot generalize
due to the reduced volume of input data resulting in an overfit
model. With this in mind, we ran a series of experiments
where our network was trained on downsampled variants of the
input data, synthesized using a decimation filter that applies an
anti-aliasing filter before downsampling such that the apparent
sampling rate is no lower than 160Hz.

Since we have shown via the spectrogram that the informa-
tion we care must reside below 80Hz, downsampling by up to a
factor of four should not reduce the information content within
the signal. This is observed in Table II where the network
accuracy is consistent across a range of decimation factors
and the computation time decreases linearly.

As energy consumption is linearly related to L, as shown in
Equation 1, so downsampling the signal to the shortest possible
representation will save energy with respect to the original
signal. To reduce concerns of overfitting the data, we select
for a sampling rate of 200 Hz, i.e., a decimation factor of
4, to ensure all spectral content is retained. This reduces the
energy consumption per inference by a factor of 4, although
the gains in battery life are smaller than this due to power
usage by other components, as will show in Section V

E. Delayed Inference

To achieve a long battery life, the processor needs to be
duty-cycled such that the hardware spends as much time in
the low-powered sleep state as possible. Measuring the entire
magnetic signature of a passing vehicle is impractical, since
the sensor would need to poll continuously to find the first
moment the vehicle nears the magnetometer.

The processor should be duty-cycled such that it is active
only when a car is passing. Ideally, the magnetometer too
would be duty-cycled to use a lower sampling rate when
cars are not passing, but react to significant changes in the
magnetic field such that it wakes itself and the processor.
The magnetometer we selected implements this functionality
via a programmable threshold and debounce timing, which in
combination, allow for energy efficient presence detection of
vehicles.

Therefore, low-power operation will prevent us from seeing
the entire signature of the vehicle; however, we have found
that it is sufficient to classify on a subset of that signal. We
introduce a degree of freedom called ”delayed inference”, in

Fig. 5: Classifier accuracy when trained on delay inference
from -225 to 225 samples. The delay is performed prior to

the downsampling operation.

which the recurrent classifier is not run on the immediately
available samples. Instead, we wait a small amount of time
such that the initial portion of the signal is ignored, which
provides more time to debounce the signal and wake up the
processor. We ran an experiment the model’s performance
while varying this delay from the first magnetometer until we
start using current magnetometer samples within the recurrent
model. We vary this delay from -225ms to 225ms. A negative
delay is meant to emulate the case where we begin running the
model before the vehicle affects the magnetic field. A large
positive delay may miss the vehicle entirely (depending on its
speed). Figure 5 shows the impact on accuracy.

Since there is a linear relationship between energy and
sequence length, L, as shown in Equation 1, a larger infer-
ence delay should be selected that still exhibits acceptable
classification performance. For our network, we observe that
an inference delay of 75 samples (with respect to the full
800Hz sampling rate, this is 94ms of delay) would result in the
best tradeoff of performance to energy efficiency. Independent
of other optimizations, using this 75 sample inference delay
would reduce the energy consumption per inference by 12.5%.

F. Network Level Energy Optimization

All the methods discussed previously reduce energy usage
for a single sensor, yet sensors such as the TrafficNNode
are meant to be deployed en-masse as a sensor network.
We consider additional optimizations to improve battery-life
across the network of devices by load-balancing between
sensors, although this was not strictly measured given that
we did not engage in a full deployment of TrafficNNode with
our proposed traffic measurement algorithm.

Several load-balancing techniques include:
• All sensors running at once and randomly ignoring some

vehicle events independently on each sensor
• N th order strided measurements for sensors placed along

the same road, meaning sensors would only perform
inference on every one of N vehicles detected; each
sensor should be out of phase (not measuring the same
vehicles) with those nearby.

Page 5



Fig. 6: Battery Life impacts of our optimizations, assuming
10,000 AADT.

• Sensors take alternating time ’shifts’, such as being active
every other day or hour

As shown in [22] and our results thus far, the linear rela-
tionship between the number of classifications and battery life
can be further exploited by leveraging multiple sensors. These
network-level optimziations all reduce the total computation
time by reducing the apparent AADT at each sensor. The
selection of each of these techniques is application specific,
and can stretch the lifetime of each sensor, although there
is an upper limit of 6.5 years due to the unavoidable power
spent maintaining the device in sleep state (assuming the
magnetometer can be turned off during inactive load cycles).

V. RESULTS

For our dataset, we believe the number of measurements
is small (500 measurements total, pre-augmentation) to the
point that overfitting is difficult to avoid. For this reason,
we qualify that our accuracy results should be taken with a
grain of salt. Instead, we aim to communicate our method-
ology for reducing energy consumption of on-board, time-
series machine learning, specifically for traffic measurement.
We believe these strategies for reducing sampling rate, early
interference, and tuning model size are general to other time-
series tinyML applications, although the exact parameters are
highly application dependent.

Taking our optimization techniques into account, we esti-
mate the battery life of our IoT sensor using Equation 4.

Figure 6 shows the impact of our optimizations, particularly
reduction in sampling rate and delayed inference, on the
overall battery life. Clearly, reducing the sampling rate has
the largest impact. It also has less risk of impacting accuracy
than delayed inference, given knowledge of the magnetometer
traces’ spectral qualities, whereas some vehicles still may have
distinguishing characteristics in the early portion of the signal.

Roadway Type AADT
Highway >15000
Arterial 10000 - 15000

Collector 5000 - 10000
Local 1000 - 5000

TABLE III: AADTs the network was evaluated over.

Fig. 7: Estimated lifetime over a range of AADTs for a
single sensor without load-balancing. 2Ah Lithium Thionyl
Chloride battery with 90% usable capacity, and the LoRA

radio transmits aggregates every 15 minutes @ 1 kbps
(SF10, +14dBm)

The battery life is dependent on the number of vehicles
we perform inference on, the AADT, so we consider sev-
eral roadway types following the Functional Classifications
guidelines outlined by the U.S. Federal Highway Administra-
tion. States and local governments have slight variations of
these guidelines, but, in general, roadways are classified via
travel characteristics, which are distance served, access points,
speed limit, distance between routes, usage (AADT/DVMT),
significance, and number of lanes, as summarized in [23]. We
collected several AADT ranges from CalTrans and the City of
San Joe, California to aid our analysis of battery life over a
feasible set of AADTs as measured in the real world. These
ranges are described in Table III.

The estimated battery life resulting for our fully optimized
RNN is shown across a range of feasible AADTs in Fig-
ure 7. This figure shows where energy is spent in the device,
in which processor sleep state, active (compute) state, and
LoRa transmission consume the bulk of the energy. For low
AADT, the sleep state will dominate the battery life, and
regularly scheduled LoRa transmissions will have an increased
contribution throughout the entire lifetime. For high AADT,
computation takes on a larger portion and the sleep state will
have less impact as we spend less time sleeping, more time
computing. If not specified, the reader may assume that we
are modeling after an AADT of 10,000 as this is the midpoint
between arterial and collector road traffic volumes per day.

Figure 8 shows the impact of network usage on the battery

Page 6



Fig. 8: Battery lifetime for a range of communication
intervals

life. We assume to be using a LoRa radio transmitting at SF10
and TX power +14dBm. We show two degenerate cases, in
which all samples are uploaded to the Cloud for inference, and
when every vehicle detection is communicated; the battery life
in these cases is quite poor compared to uplinking aggregates
of all vehicles measured in a recent timeframe, such as 15
minutes or a day. This impacts the battery life noticeably until
the aggregates are send on a several-hour basis, after which
the energy impact of communication is small enough to be
ignored.

We envision our sensor being used primarily on collector
and arterial roads, in which AADT is likely within 4000 to
16000 cars per day. If sensors are deployed individually, then
we would expect 1.5 - 2.8 years of lifetime per sensor. By
load-balancing between multiple sensors, we expect life times
greater than 3 years which is on par with the expected life time
of the battery (which is subjected to intense heating cycles of
the road) and the life time of the RPM tself, which is no longer
than 5 years. This demonstrates the feasibility of deploying
this battery-powered, traffic measurement sensor.

VI. TRAFFIC MEASUREMENT SYSTEM DESIGN

We have designed TrafficNNode to measure traffic condi-
tions in high spatial and temporal resolutions. Here, we discuss
the implications of our model and sensor in the broader context
of a traffic measurement system, as well as several essential
points to consider in its implementation.

Spatial resolution is contingent on the number of sensors
deployed and their distribution in space, which should re-
dundantly cover points of primary interest like arterial and
collector roads as opposed to low usage residential streets. To
achieve the goal of high spatial resolution, the devices must be
cheap, and simple to deploy and maintain. Just like an ordinary
RPM, the packaged version should require little to no extra
labor when installing, such as measuring and adjusting the
physical alignment to make an internal antenna point towards
the nearest base station. However, there must be advance
planning to ensure high likelihood of network coverage at the

installation sites by creating a map of signal strength from
the gateway or base-station. Pavement mounted sensors may
be difficult to communicate with given the higher likelihood
of obstacles between the antenna, which must be inside the
hardy enclosure, and the base-station. If building a networking
infrastructure to support this application, such as LoRaWAN,
one must consider the network capacity vs. the number of
devices in the region, a common consideration that cellular
infrastructure has already dealt with.

Temporal resolution is directly related to how quickly data
may be retrieved over a wireless link from the deployed
devices, which has an inverse relationship with the lifetime
as shown in the previous section. The sooner data is made
available, the faster it can be acted upon for changing traffic
lights, speed limits, etc. Unfortunately, we find that using
this on the timescales necessary for real-time traffic control
of V2X infrastructure is infeasible if a long-term battery
life is required. However, it is well-situated for multi-year
installment in which data is available within the hour, which
is a substantial improvement over existing traffic measurement
systems.

We have focused our efforts on reducing the energy im-
pact of the traffic classification model, given its novelty
in battery-operated sensors. However, there are plenty more
optimizations to be made at a systems level for each sensor
using more standard embedded systems design principles. One
such example is to leverage low-power peripherals to write
magnetometer samples to memory using DMA and perform
inference across those samples in bulk. This helps to mitigate
the non-zero overhead of waking the processor from sleep
state, which we have not explored in this work.

VII. FUTURE WORK

There are several logical next steps from the work presented
thus far.

The performance and measurements that we have demon-
strated is specific to both the dataset we have curated and the
platform that we have deployed our model on. This dataset is
quite till limited since it contains only SUVs and sedans (low
variability) and only has 500 individual samples. Therefore,
we cannot directly speak to the accuracy of our model, given
the liklihood of overfitting. The dataset should be expanded
to include many more samples per class, and encompass more
types of vehicles and more granular speed classes. While the
methodology outlined in this study is valid regardless of the
dataset’s composition, we have concerns that some of the
parameters, such as sampling rate decimation factor, may be
become less friendly to low power operation. We may require
more samples to accurately discern similar vehicles. This also
does not include variations in vehicles such as vehicles towing
or with trailers. The second concern is with the network size.
As the size of the dataset and variability of the data increases,
the network needs to be expanded too.

Our investigation on the impacts of sampling rate and
decimation within Section IV-D sparked our curiosity in
determining which samples to use or ignore. This idea was

Page 7



recently studied by Tao et al. [24], in which they trained a
neural network on the input of their classifier to gate inputs
to the RNN. However, using such a solution in a compute
and energy constrained system such as our own may have
potential energy savings by reducing the sequence length of the
measurement but also introduces the overhead of the additional
layer. This strategy and alternatives should be considered in
the context of our system.

Due to the online nature of RNN inference, we can extract
the inference probabilities at any time step by feeding the
hidden state to the projection layer. This represents an oppor-
tunity to stop inference early, an idea explored by Rußwurm
et al. [25], which uses an additional output in the last layer
of the RNN to indicate the model’s confidence that it has
converged and may stop early. Clearly, this would improve
the total inference time and thus, the energy per computation.
However, this requires the final projection layer to be run
at every timestamp, which increases the total compute time
per inference and introduces additional overhead. It is worth
investigating if this would increase or decrease the overall
battery life of our system.

VIII. CONCLUSION

In this study, we have designed a battery-powered,
pavement-mounted sensor that classifies vehicle type and a
speed range using three-axis magnetometer readings with a
recurrent neural network (RNN). We deploy this RNN to our
microcontroller -based system, which must last several years
without recharging or maintenance. To achieve this lifetime,
we built a methodology to apply standard and application-
specific optimizations to reduce the overall energy cost vehicle
detection and classification. For this application, the energy
cost per inference can be reduced by decreasing the sampling
rate and delaying inference beyond the initial detection. These
optimizations improve battery lifetime by 11.8x over the
original baseline model to achieve a total lifetime of up to
2.8 years. We have demonstrated that is feasible to deploy an
inexpensive, battery-powered, intelligent sensor directly to the
roadways.

REFERENCES

[1] H. Chourabi, T. Nam, S. Walker, J. R. Gil-Garcia, S. Mellouli, K. Nahon,
T. Pardo, and H. Scholl, “Understanding smart cities: An integrative
framework,” 45th Hawaii International Conference on System Sciences,
pp. 2289–2297, 01 2012.

[2] K. Nellore and G. P. Hancke, “A survey on urban traffic management
system using wireless sensor networks,” Sensors, vol. 16, no. 2, 2016.

[3] S. Djahel, R. Doolan, G.-M. Muntean, and J. Murphy, “A
communications-oriented perspective on traffic management systems for
smart cities: Challenges and innovative approaches,” IEEE Communica-
tions Surveys Tutorials, vol. 17, no. 1, pp. 125–151, 2015.

[4] B. Iannucci and A. Rowe, “Crowdsourced Smart Cities,” in Intelli-
gent Transportation Systems (ITS) World Congress, (Montreal, Quebec,
Canada), 2017.

[5] S. Oh, S. G. Ritchie, and C. Oh, “Real-time traffic measurement
from single loop inductive signatures,” Transportation Research Record,
vol. 1804, no. 1, pp. 98–106, 2002.

[6] M. H. Kang, B. W. Choi, K. Koh, J. Lee, and G. T. Park, “Experimental
study of a vehicle detector with an amr sensor,” Sensors and Actuators
A-physical, vol. 118, pp. 278–284, 2005.

[7] Z. Zhang, T. Zhao, and H. Yuan, “A vehicle speed estimation algorithm
based on wireless amr sensors,” in Big Data Computing and Communi-
cations (Y. Wang, H. Xiong, S. Argamon, X. Li, and J. Li, eds.), (Cham),
pp. 167–176, Springer International Publishing, 2015.

[8] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR,
vol. abs/1412.3555, 2014.

[9] S. Djahel, R. Doolan, G.-M. Muntean, and J. Murphy, “A
communications-oriented perspective on traffic management systems for
smart cities: Challenges and innovative approaches,” IEEE Communica-
tions Surveys Tutorials, vol. 17, no. 1, pp. 125–151, 2015.

[10] M. Pla-Castells, J. J. Martinez-Durá, J. J. Samper-Zapater, and R. V.
Cirilo-Gimeno, “Use of ict in smart cities. a practical case applied
to traffic management in the city of valencia,” in 2015 Smart Cities
Symposium Prague (SCSP), pp. 1–4, 2015.

[11] Q.-J. Kong, Q. Zhao, C. Wei, and Y. Liu, “Efficient traffic state
estimation for large-scale urban road networks,” IEEE Transactions on
Intelligent Transportation Systems, vol. 14, no. 1, pp. 398–407, 2013.

[12] J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, and
A. M. Bayen, “Evaluation of traffic data obtained via gps-enabled mobile
phones: The mobile century field experiment,” Transportation Research
Part C: Emerging Technologies, vol. 18, no. 4, pp. 568–583, 2010.

[13] Z. Ning, J. Huang, and X. Wang, “Vehicular fog computing: Enabling
real-time traffic management for smart cities,” IEEE Wireless Commu-
nications, vol. 26, no. 1, pp. 87–93, 2019.

[14] A. Allström, J. Barceló, J. Ekström, E. Grumert, D. Gundlegård, and
C. Rydergren, Traffic Management for Smart Cities, pp. 211–240. Cham:
Springer International Publishing, 2017.

[15] C. Esposito, A. Castiglione, F. Pop, and K.-K. R. Choo, “Challenges
of connecting edge and cloud computing: A security and forensic
perspective,” IEEE Cloud Computing, vol. 4, no. 2, pp. 13–17, 2017.

[16] M. Mohammadi and A. Al-Fuqaha, “Enabling cognitive smart cities
using big data and machine learning: Approaches and challenges,” IEEE
Communications Magazine, vol. 56, no. 2, pp. 94–101, 2018.

[17] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
2016.

[18] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden,
“Tensorflow lite micro: Embedded machine learning on tinyml systems,”
CoRR, vol. abs/2010.08678, 2020.

[19] N. Tan, “utensor-ai inference library based on mbed and tensorflow.”
online. https://github.com/uTensor/uTensor.

[20] E. Liberis, u. Dudziak, and N. D. Lane, “nas: Constrained neural
architecture search for microcontrollers,” in Proceedings of the 1st
Workshop on Machine Learning and Systems, EuroMLSys ’21, (New
York, NY, USA), p. 70–79, Association for Computing Machinery, 2021.

[21] L. Heim, A. Biri, Z. Qu, and L. Thiele, “Measuring what really matters:
Optimizing neural networks for tinyml,” CoRR, vol. abs/2104.10645,
2021.

[22] C. R. Banbury, C. Zhou, I. Fedorov, R. M. Navarro, U. Thakker,
D. Gope, V. J. Reddi, M. Mattina, and P. N. Whatmough, “Micronets:
Neural network architectures for deploying tinyml applications on com-
modity microcontrollers,” CoRR, vol. abs/2010.11267, 2020.

[23] “Highway functional classification concepts, criteria and procedures:
2013 edition,” Tech. Rep. FWHA-PL-13-026, U.S. Department of Trans-
portation Federal Highway Administration, Salt Lake City, UT, 2013.

[24] J. Tao, U. Thakker, G. Dasika, and J. Beu, “Skipping rnn state updates
without retraining the original model,” in Proceedings of the 1st Work-
shop on Machine Learning on Edge in Sensor Systems, pp. 31–36, 2019.

[25] M. Rußwurm, S. Lefèvre, N. Courty, R. Emonet, M. Körner, and
R. Tavenard, “End-to-end learning for early classification of time series,”
arXiv preprint arXiv:1901.10681, 2019.

Page 8


	Introduction
	Related Work
	Sensor, Dataset and Baseline Models
	Methodology
	TrafficNNode Model
	Metrics
	Model Size Tuning
	Minimal Sufficient Sampling Rate
	Delayed Inference
	Network Level Energy Optimization

	Results
	Traffic Measurement System Design
	Future Work
	Conclusion
	References

